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Abstract. A concept nearly omnipresent in mathematics is the simultaneous tool and

idea of modular arithmetic. Modular arithmetic is almost always done over the integers,

and in most scenarios, cyclical arithmetic is quite intuitive. However, it is by no means the

only way to examine remainder groups. Very interesting, yet elegant results arise when

the ambient ring is shi�ed to something more complex. In this paper, we take a deep dive

to answer questions about the structure of the underlying additive group of '/(U), as well
as its group of units where ' is one of the ring of Gaussian integers, the ring of Eisenstein

integers, or various polynomial rings.
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1. Introduction

One of themost important concepts in number theory, and inmathematics in general, is

the idea of modular arithmetic. To do modular arithmetic one must �rst select a modulus

or divisor to work under. �ere are many ways this can be done, but the most interesting

outcome is when you restrict the domain of the modular arithmetic to a ring similar to

the integers. If we hone in our focus to only the integers, under the operation of addition

modulo some integer = a set of congruence classes are formed. �ese congruence classes

constitute the cyclic group of order =. Similarly, the set of all congruence classes which
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have a multiplicative inverse (i.e., a congruence class which can be multiplied by to get the

congruence class de�ned by the multiplicative identity, 1) also constitute a group under

the operation multiplication mod =, this group is well known as Z×= which has a well-

known structure. However, what if instead of studying just the integers, we instead ask

the same questions about other rings? For example, what is the isomorphism class of the

group of unitsZ[8] mod someGaussian integer? Which Eisenstein Integers have primitive

roots? And many other questions.

In this paper, we provide answers for many of the questions of the nature described

above and utilize them to further our understanding of quotient rings as a whole by mak-

ing overarching connections.

2. The Gaussian Integers

�e Gaussian integers are de�ned as follows:

Z[8] = {0 + 18 | 0, 1 ∈ Z}.

�e norm of 0 + 18 is 02 + 12
Beginning with our primary question: what is the isomorphism class of Z[8] mod U

under addition for some Gaussian integer U? We denote this group as Z[8]/(U)+.1 First,

notice that we may assume without loss of generality that both components of U are not

negative. It is easy to see that Z[8]/(U) � Z[8]/(−U), and for conjugation, let q (V) = V

be the function with domain Z[8]/(U) and codomain Z[8]/(U). See that we have

q (G + ~) = G + ~ = G + ~ = q (G) + q (~),

q (1) = 1 = 1,

and for G = G1 + G28 and ~ = ~1 + ~28 we have that

q (G~) = (G1 + G28) (~1 + ~28) = G1~1−G2~2−(G1~2+~1G2)8 = (G1−G28) (~1−~28) = q (G)q (~).

�is means q satis�es the ring homomorphism conditions, and is a bijection (as q has

an inverse being conjugation as well.), meaning Z[8]/(U), it associates, and conjugates all
fall within the same ring isomorphism class.

Our �rst part to this answer comes from [Conrad] with the following

�eorem 2.1 (�eorem 7.14 from [Conrad]). For Gaussian integer U where U ≠ 0 we have
that

|Z[8]/(U)+ | = # (U)
where # (U) is the norm of U .

1
�roughout this paper, we refer to the underlying additive group in a ring ' as '+.
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With �is incredibly useful information, we can prove the following

Proposition 2.2. Let U = 0 + 18 where U ≠ 0 where X = gcd(0, 1).

Z[8]/(U)+ � Z# (U)/X × ZX

Proof. First, note that 08 ≡ 1 (U), and 18 ≡ −0 (U), therefore, by the linear representation

of the gcd every element of Z[8]/(U)+ is equivalent to one with imaginary component in

ZX where X = gcd(0, 1) over the integers. Furthermore, we have that

(0 + 18)
(
0

X
+ 18
X

)
=
02 + 12
X
≡ 0 (U).

From this it follows that every element in Z[8]/(U)+ is equivalent to a number of the form

G +~8 for G ∈ Z# (U)/X and ~ ∈ ZX . �ere are exactly # (U) ways to represent a number like

this, and by�eorem 2.1 it follows that this representation is unique for every congruence

class. Furthermore, it is clear that addition is pointwise, and thus our claim follows.

�

�e isomorphism is not as predictable as one may initially expect, for example the

elements of order 2 in Z[8]/(4 + 28)+ are 5, 2 + 8 and 7 + 8 (Seen Figure 1 as −1 + 28 , 2 + 8 ,
and 1 + 38 respectively) which may be confusing as it is isomorphic to Z10 × Z2, but the
elements of order 2 in this group are (0, 1), (5, 0), and (5, 1).

Figure 1. Depiction of Z[8]/(4 + 28)+ with the elements of order 2 colored

blue, and the other 17 colored green. �e do�ed grid is Z[8] with the hor-

izontal axis being the value of the real component, and the vertical being

the imaginary component with the bo�om-most green point is 0 + 08 .
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Now we shi� our focus to the multiplicative question. �at is, identifying the isomor-

phism class of (Z[8]/(U))×. �is was answered for all Gaussian prime powers in Z[8] in
[Cross] the following theorems.

�eorem 2.3 (�eorems 3 and 4 from [Cross] ). Let c be a Gaussian integer prime that is
not an integer prime, and has norm greater than 2. If (Z[8]/(c))× is the group of units in
Z[8]/(c) then

(Z[8]/(c=))× � Z@=−@=−1
where @ = # (c).
Let ? be a Gaussian integer prime that is also an integer prime. We have that

(Z[8]/(?=))× � Z?=−1 × Z?=−1 × Z?2−1.

�eorem 2.4 (�eorems 5 and 6 from [Cross]). If U is a Gaussian integer prime with norm
2 then

(Z[8]/(U))× � Z1,
(Z[8]/(U2))× � Z2,
(Z[8]/(U3))× � Z4,

(Z[8]/(U4))× � Z2 × Z4,
if = ≥ 5 is even with = = 2< then

(Z[8]/(U=))× � Z
2
<−1 × Z

2
<−2 × Z4,

and if = ≥ 5 is odd with = = 2< + 1 then

(Z[8]/(U=))× � Z
2
<−1 × Z

2
<−1 × Z4.

While the above theorems do not themselves yield a result regarding the group of units

mod composite Gaussian integers, we can utilize a speci�ed form of the Chinese remain-

der theorem for rings.

�eorem2.5 (Chinese Remainder�eorem For Rings (Proposition 12.3.1 in [Ireland, Rosen])).
Let U and V be relatively prime elements of a ring '

('/(UV))× � ('/(U))× × ('/(V))×

�is is theorem is utilized in the following section, but in this section, it can be used to

prove one direction of the complete characterization of primitive roots found in [Cross].

�eorem 2.6 (�eorem 8 from [Cross]). �e Gaussian integers with primitive roots (i.e., U
such that Z[8]/(U)× is cyclic) are as follows:
• �e Gaussian integer primes that are also integer primes
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• non-integer Gaussian integer primes with norm greater than 2, and all of their positive
powers
• 1 + 8
• 2

• any of the above multiplied by 1 + 8

With this, we have answered a large portion of the central questions posed about this

ring.

But, I still have a tangential question that arises from noticing a pa�ern in Cross’s

results. It is easily seen that with the exception of the �rst two equations in �eorem 2.4

that the order of Z[8]/(U)× for all prime powers U is divisible by 4. �us, by �eorem 2.5

if = > 2 is 2 mod 4, then no group of units mod any Gaussian integer has size =. �is

invites us to ask the following question.

Which even natural numbers are not the order of the group of units for any Gaussian

integer?

We call these integers Gaussian nontotients. In addition to the aforementioned 2 mod

4 case, there are Gaussian nontotients that are 0 mod 4 as well. We can develop an entire

class of nontotient numbers 0 mod 4.

Proposition 2.7. Let A ≠ 5 be a prime 1 mod 4 and< = 4A . If< + 1 is not prime, then< is
nontotient.

Proof. Let A be a prime congruent to 1 mod 4. Let< = 4A . See that<’s only factorizations

are <, 2 · 2A , 2 · 2 · A , and 4 · A . Furthermore, if < is totient, then in at least one of its

factorizations every factor must be totient as well. But A and 2A cannot be totient as A is

odd and 2A is 2 mod 4. �erefore< is totient if and only if it takes one of the following

two forms

< = @= − @=−1

for some integer prime @ equivalent 1 mod 4, or

< = ?2=−2(?2 − 1)

for some integer prime ? equivalent 3 mod 4.

�e la�er is not a valid option unless = = 1, which gives us the modi�ed criteria of

< = @=−1(@ − 1)

for some integer prime @ 1 mod 4, or

< = (? + 1) (? − 1)
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for some integer prime ? 3 mod 4.

However, the la�er is divisible by 8, but< is not leaving us with the sole criteria of

< = @=−1(@ − 1)

Which could be valid in two scenarios

(A) = = 1

(B) @ = 5, = = 2

�e second scenario gives only the very speci�c< = 20, and the �rst scenario will work

if and only if< + 1 is also prime. �is proves our claim. �

To see the above proposition in action, look no further than 68, it is equal to four times

17, a prime, and 69 is not prime, from this it should follow that 68 is Gaussian nontotient,

and sure enough, this can be easily veri�ed empirically.

3. The Eisenstein Integers

Similarly to the Gaussian Integers, we have the ring Z[l], where

Z[l] = {0 + 1l | 0, 1 ∈ Z}

andl =
−1+
√
−3

2
. �ese are called the Eisenstein integers. �e norm of 0+1l is 02−01+12.

Similar to the Gaussian integers we need only consider when U has both components

non-negative when examining Z[l]/(U). �e justi�cation is nearly identical to the one

for Gaussian integers, so we will not repeat it here.

We begin again by considering the group of Eisenstein under additionmodU , Z[l]/(U)+.
In a near-identical fashion to the Gaussian Integers, the following statement can be

proven.

Proposition 3.1. For U ∈ Z[l] with U = 0 + 1l , # (U) = 02 + 12 − 01, and X = gcd(0, 1)
over the integers.

Z[l]/(U)+ � Z# (U)/X × ZX

Now, we shi� our focus to the same question regarding the group of units in these quo-

tient rings. �is was partially answered [Gullerud, Mbirika] with the following theorem.

�eorem 3.2 (�eorem 4.3 and �eorem 5.3 from [Gullerud, Mbirika]). If ? is an integer
prime that is also an Eisenstein prime then

| (Z[l]/(?=))× | = ?2=−2(?2 − 1).

If V is an Eisenstein prime with norm 3 then

| (Z[l]/(V=))× | = 2 · 3=−1.
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And if c is an Eisenstein prime that has norm greater than 3, and is not an integer prime
then

(Z[l]/(c=))× � Z@=−@=−1
where @ = # (c).

While this does result in the size of the group of units of Z[l]/(U) when combined

with �eorem 2.5 for all U ∈ Z[l] it does not yield the isomorphism class for Z[l]/(U)×
for all U .

Remark 3.3. Using a computer program, I determined that all integer Eisenstein primes

below 100 have a primitive root, and thus are cyclic

�is leads me to conjecture the following.

Conjecture 3.4. If ? is an integer prime as well as an Eisenstein prime, then (Z[l]/(?))×
is cyclic.

However, even this would still leave the remaining powers of ? , which leaves us with

the unanswered question:

�estion 3.5. What is the group structure of

(Z[l]/(?=))×

for prime ? congruent to 2 mod 3, and natural =.

Moving on, in [Gullerud, Mbirika] the authors ask the following question:

�estion 3.6 (�estion 6.2 in [Gullerud, Mbirika]). What positive even integers are Eisen-

stein nontotient?

Where “Eisenstein nontotient” is this chapter’s analog to the previous chapter’s “Gauss-

ian nontotient.”

We can easily prove the following in regards to this question.

Proposition 3.7. If = > 2 is not divisible by 3 then = is Eisenstein nontotient.

Proof. If U is divisible by an Eisenstein prime that is also an integer, then by the Chinese

Remainder�eorem for rings and�eorem 3.2 we have |Z[l]/(U)× | is divisible by 3 (as ?2
is always 1 mod 3). �e same can be said if U is divisible by V2 where V is some Eisenstein

prime with norm 3 or c where c is an Eisenstein prime with prime norm 1 mod 3 using

the same �eorems.

�erefore, we have that every Eisenstein totient is divisible by 3, with the exception of

the totient of Eisenstein primes with norm 3, which has an Eisenstein totient of 2, proving

our claim �
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�is completes the section on Eisenstein integers, and while not as well understood as

its Gaussian counterpart, it has many parallels with it which seem to suggest a greater

connection between these rings.

4. Polynomial Rings

�is section will be quite di�erent from the others. Let F[- ] denote the ring of poly-

nomials with coe�cients in a �eld F. Let the # (%) be the norm for this ring where # (%)
is equal to the degree of % We have # (%&) = # (%) + # (&). As stated in [Smith 1] and

[Smith 2], F[- ] also has a division algorithm and unique factorization.

It takes li�le e�ort to conjure a proof for an equivalence like Z? [- ]/(- )+ � Z? , or even
more generally Z? [- ]/(-:)+ � Z:? .
However, what if select our modulus to be a non-monomial polynomial? Well in that

case we have the following.

Proposition 4.1.
Z? [- ]/(% (- ))+ � Zdeg(% (- ))?

Proof. First, we show that |Z? [- ]/(% (- ))+ | = deg(% (- )). �is is easily proven by seeing

that for any polynomial & (- ) with degree 3 where deg(% (- )) ≤ 3 that there is some

polynomial '(- ) with degree less than 3 such that

& (- ) − -3−deg(% (- ))% (- ) = '(- )

Which in turn supplies us with

& (- ) ≡ '(- ) (% (- ), ?).

�is can be repeated until we have a polynomial with a degree less than deg(% (- )). It is
also easily seen that no polynomial with degree less than deg(% (- )) can be a multiple of

% (- ), meaning that the set of polynomials with degree less than deg(% (- )) are exactly
the elements of Z? [- ]/(% (- ))+, of which there are ?deg(% (- )) .

However, note that for any element� in Z? [- ]/(% (- ))+ we have that ? ·� ≡ 0, mean-

ing every element of Z? [- ]/(% (- ))+ has order that divides ? , however, because ? is

prime that means either that � is the identity element, or it has order ? , implying that

Z? [- ]/(% (- ))+ � Zdeg(:)? .

�

However, what about the group of units? Well, under multiplication, we have the fol-

lowing.

Proposition 4.2.
| (Z? [- ]/(- 2))× | = ?2 − ?
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Proof. Let* be some unit in Z? [- ]/(- 2) where* ≡ 0G + 1. Notice that 1 cannot be 0, as
no multiple of G is congruent to 1. Otherwise, take the following steps

Because 1 is some non-zero integer, it has a multiplicative inverse, and this means we

have the following

(0G + 1) (1−1 − 01−2G) ≡ 01−1G − 021−2G2 + 1 − 01−1G ≡ −021−2G2 + 1 ≡ 1 (- 2, ?)

�erefore, every element of Z? [- ]/(- 2) with non-zero1 has an inverse, meaning we have

proven our claim.

�

�is result allows us the extrapolate the following conclusion from the fundamental

theorem of �nite Abelian groups.

Corollary 4.3. If ? is some prime such that ? − 1 is square free then (Z? [- ]/(- 2))× has a
primitive root.

However, this doesn’t hold just for primes of this type, but every positive integer prime.

Furthermore, we can identify every such primitive root

�eorem 4.4. For prime ? , an element 0 + 1G ∈ (Z? [- ]/(- 2))× is a primitive root if and
only if 0 ≠ 0 and 1 is a primitive root in Z? .

Proof. Let ? be an integer prime Because ? is prime, there is a primitive root in Z? , let A

be one such primitive root. Now, consider the following expression.

(0G + A ): mod G2, ?

See that

(0G + A ): ≡ :0A:−1G + A: mod G2, ?

Because A is a primitive root in Z? , we know that A: ≡ 1 if and only if : is a multiple

of ? − 1. Furthermore, because A:−1 is never 0 mod ? , :0A:−1G ≡ 0 if and only if : is a

multiple of ? or 0 = 0. However, if 0 = 0 then 0G + A would clearly not be a primitive root

of (Z? [- ]/(- 2))×. �erefore, we have that |0G + A | = (?, ? − 1) = ?2 − ? for non-zero 0

and primitive root A in Z? .

Now, see that if A were not a primitive root of Z? then 0G + A could not be a primitive

root either, as (0G + A )G could not take on every value of (Z? [- ]/(- 2))×.
�us, for any element 0G + A ∈ (Z? [- ]/(- 2))× we have that 0G + A is a primitive root

if and only if A is a primitive root in Z? and 0 ≠ 0 �

One implication of this is the following.
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Corollary 4.5. �e number of primitive roots in (Z? [- ]/(- 2))× is equal to

i (?) · i (i (?)) = (? − 1) · i (? − 1)

where i is the integer Euler totient function.

�e question of nontotients in these rings is much more complex, as the multiplicative

structure in these polynomial groups is much harder to discern, but I do plan to look into

this problem in the future.

5. Conclusion

With this investigation at its end, there are some surprising discoveries and observa-

tions that have arisen. For example, the very obvious parallels between the Gaussian and

Eisenstein integers. In addition, we were also able to �nd a set of necessary and su�cient

conditions for an element of (Z? [- ]/(- 2))× to be a primitive root, as well as other facts

regarding remainder groups in polynomial quotient rings.

In the future, I would like to do more work on questions related to remainder groups.

Speci�cally, Gaussian nontotients, and remainder groups in other classes of polynomial

rings.
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