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1. Preface

This paper was written for my Math-342 class, Applied Linear Algebra. I am currently in the
process of doing a more thorough literature review and turning this into an actual publication.
The paper itself is an introduction to a collection of graph theoretic topics via the lens of linear algebra,

and specifically: Eigenvalue analysis. We demonstrate the effectiveness of this technique by synthesizing

a multitude of original results. The reader requires no graph theory knowledge but should have a good

grasp of linear algebra.

2. Introduction

In this paper, we will be diving into linear algebraic graph theory. Specifically, we will be exploring how

the eigenvalues of a particular matrix representation of a graph impact its graph-theoretic properties. In

Section 3 we will introduce the vocabulary needed to properly understand the subsequent sections. Section

4 will provide the linear algebraic background required for the final section. In our final section, Section

5, we will discuss the impact of a graph’s so-called “adjacency spectrum” on its tangible graph theoretic

properties through various results provided by other authors and proofs provided by the author of this

paper. Lastly, in Section 6 we discuss the so-called “smith graphs” as well as a slight generalization to the

concept, for which we provide a proof for the complete classification thereof.
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3. Definitions

A (simple) graph Γ = (𝑉 , 𝐸) is defined by a vertex set 𝑉 and an edge set 𝐸 of 2-subsets of𝑉 . In this paper,

we limit our view to when𝑉 is finite, and if |𝑉 | = 𝑛 we say that Γ has order 𝑛. Additionally, for any graph

Γ of order 𝑛, we should note that 𝑉 can be represented by any 𝑛-set of objects, and so we will follow the

convention that (unless otherwise stated) 𝑉 = [𝑛] = {1, . . . , 𝑛}. The size of a graph is equal to the number

of edges the graph possesses, ie. the size of Γ = (𝑉 , 𝐸) is |𝐸 |.
The degree of a vertex 𝑣 ∈ 𝑉 , denoted by 𝑑 (𝑣), is the number of edges incident to 𝑣 , that is

𝑑 (𝑣) = |{𝑒 | 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑒}|.

For a graph Γ = (𝑉 , 𝐸) we define the minimal degree function, 𝛿 , to be the smallest value achieved by

𝑑 : 𝑉 → Z≥0 across its entire domain, ie.

𝛿 (Γ) = min{𝑑 (𝑣) | 𝑣 ∈ 𝑉 }.

We similarly define the maximum degree as

Δ(Γ) = max{𝑑 (𝑣) | 𝑣 ∈ 𝑉 }.

The average degree of a graph Γ, written as 𝜇 (Γ), is defined as

𝜇 (Γ) = 1

|𝑉 |
∑︁
𝑣∈𝑉

𝑑 (𝑣) .

We say that a graph is 𝑘-regular if every vertex of Γ has degree 𝑘 . It is seen that, for non-regular graphs,

𝛿 (Γ) < 𝜇 (Γ) < Δ(Γ) .

The adjacency matrix of a graph Γ = (𝑉 , 𝐸) with order 𝑛 is the unique 𝑛 by 𝑛 matrix, written as𝐴Γ , such

that

𝐴Γ = [𝑎𝑖 𝑗 ] where 𝑎𝑖 𝑗 =


1 {𝑖, 𝑗} ∈ 𝐸;

0 {𝑖, 𝑗} ∉ 𝐸.
One should note that 𝐴Γ is symmetric, and contains only 0’s across the main diagonal. For 𝑖 ∈ 𝑉 and the

corresponding standard basis vector e𝑖 belonging to R𝑛 we have that

𝑑 (𝑖) = | |𝐴e𝑖 | |1

where | | · | |𝑝 is the 𝐿𝑝-norm.

For a matrix𝐴 the spectrum of𝐴 is the multiset (determined by algebraic multiplicity) of the eigenvalues

of 𝐴. For example, the spectrum of ©­­«
1 −1 5

0 2 2

0 0 2

ª®®¬
is {1, 2, 2}. The spectral radius of a matrix 𝐴, sometimes written as 𝜌 (𝐴), is equal to the magnitude of the

largest eigenvalue of 𝐴. When the eigenvalues of 𝐴 are real, we write the spectrum of 𝐴 to be {𝜆1, . . . , 𝜆𝑛}
such that

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 .

Returning to graph theory, we say that there is a walk on Γ of length 𝑘 from 𝑎 to 𝑏 (or just between 𝑎 and

𝑏) for 𝑎, 𝑏 ∈ 𝑉 if there exists some sequence {𝑒𝑖}1≤𝑖≤𝑘 of edges and some sequence of vertices {𝑣𝑖}1≤𝑖≤𝑘+1
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such that 𝑣1 = 𝑎, 𝑣𝑘+1 = 𝑏, and 𝑒𝑖 = {𝑣𝑖 , 𝑣𝑖+1}. It turns out that there is a walk of length 𝑘 from 𝑎 to 𝑏 if and

only if the (𝑎, 𝑏) entry of 𝐴𝑘Γ is non-zero[6]. If for all 𝑎, 𝑏 ∈ 𝑉 there is a walk from 𝑎 to 𝑏 of length equal to

some 𝑘 we say that Γ is connected. More strictly, if there is some 𝑘 for which there is a walk between all

𝑎, 𝑏 ∈ 𝑉 of length 𝑘 then we say that Γ is primitive. For clarity, let 𝑆Γ (𝑎, 𝑏, 𝑘) be the statement “There exists

a walk of length 𝑘 from 𝑎 to 𝑏.” Our definitions are as follows:

Connected: ∀𝑎, 𝑏 ∈ 𝑉 , ∃𝑘 ∈ N, 𝑆Γ (𝑎, 𝑏, 𝑘),

and

Primitive: ∃𝑘 ∈ N,∀𝑎, 𝑏 ∈ 𝑉 , 𝑆Γ (𝑎, 𝑏, 𝑘) .
One can also develop linear algebraic definitions for connectivity and primitiveness. We see that a graph

Γ is connected if and only if there is some 𝑘 ∈ N for which

∑𝑘
𝑖=1
𝐴𝑖Γ is positive

1
in which case we say that

𝐴Γ is irreducible, and Γ is primitive if there is some 𝑘 ∈ N such that 𝐴𝑘Γ is positive, in which case we also

say that 𝐴Γ is primitive.
The final definitions we will are those that relate to graph coloring. A (proper) coloring of a graph

Γ = (𝑉 , 𝐸) is a partition of 𝑉 = 𝐶1 ∪ · · · ∪ 𝐶𝑘 such that for any 𝑒 ∈ 𝐸 with 𝑒 we have that |𝑒 ∩ 𝐶𝑖 | ≠ 2

for all 𝑖 . That is, 𝑒 is not a subset of any 𝐶𝑖 . The reason this is called a coloring is that each such partition

corresponds to some way in which one can color the vertices of a graph such that no vertices of the same

color share an edge. Thus, each𝐶𝑖 is a color and if a graph has a proper coloring with 𝑘 colors we say that

the graph is 𝑘-colorable.

Figure 1. A proper (right) and an improper (left) coloring of the six-vertex graph 𝑅5. This

graph is 3-colorable but not 2-colorable.

From a linear algebraic perspective, we can similarly define colorings. For a graph Γ with order 𝑛, define

some set c1, . . . , c𝑘 of binary vectors in R𝑛 such that

𝑘∑︁
𝑖=1

c𝑖 =
©­­­«
1

...

1

ª®®®¬ .
It can be seen that such a set can be identified with a partition of 𝑉 = [𝑛] via the rule

(1) the 𝑗th entry of c𝑖 = 1 ⇐⇒ 𝑗 ∈ 𝐶𝑖
1
A matrix 𝐵 is said to be positive (non-negative) if every entry of 𝐵 is a positive (non-negative) real number.
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for 𝑗 ∈ [𝑛]. See that (𝐴c𝑖)ℓ is non-zero if and only if the vertex ℓ is adjacent to some vertex 𝑗 for which

(c𝑖) 𝑗 is non-zero. For this reason, we say that a set of vectors of the aforementioned form is a (proper)

coloring if for all 𝑖 ∈ [𝑘] we have that

(𝐴Γc𝑖) · c𝑖 = 0.

The equivalence of this definition to the graph-theoretic definition can be seen via the non-negativity of

our vectors (𝐴Γc𝑖) · c𝑖 ≠ 0 if and only if there is some 𝑗 ∈ [𝑛] for which the 𝑗th entries of both 𝐴Γc𝑖 and c𝑖
are non-zero. However, this may only occur if there is some ℓ ∈ [𝑛] such that the ℓth entry of c𝑖 is non-zero

and 𝑎 𝑗 ℓ ≠ 0. However, since both the 𝑗th and ℓth entries of c𝑖 are non-zero, this implies that 𝑗, ℓ ∈ 𝐶𝑖 , but

if 𝑎 𝑗 ℓ ≠ 0 then we have that there is an edge between 𝑗 and ℓ , and thus, c𝑖 cannot be a member of a proper

coloring. From this, the equivalence of our definitions via (1) follows.

It is obvious that every graph of order 𝑛 is 𝑛-colorable, and no graph with any number of edges is 1-

colorable. Thus, this naturally invites the question: Given a graph Γ, what is the smallest natural number

𝑘 such that Γ is 𝑘-colorable? The answer to this question is given by 𝜒 (Γ), the chromatic number of Γ. The

function 𝜒 (Γ) is one of the most heavily studied functions in graph theory. The famous four color theorem
states that if Γ can be embedded in the Euclidean plane without the edges of Γ crossing each other then

𝜒 (Γ) ≤ 4, ie. you can color any two-dimensional map with four colors or less [1]. One bound on 𝜒 (Γ),
which can be obtained far easier, is as follows.

Proposition 3.1. For any graph Γ we have that

𝜒 (Γ) ≤ Δ(Γ) + 1.

Proof. This bound is constructed as follows: Let 𝑣 be a vertex with degree Δ(Γ) in Γ, color 𝑣 and each vertex

adjacent to 𝑣 with Δ(Γ) + 1 distinct colors.

Now, if 𝑎 is some vertex that remains uncolored, note that it cannot have more than Δ(Γ) adjacent

vertices, and thus it cannot be adjacent to more than Δ(Γ) distinct colors, and so of the existing Δ(Γ) + 1

there exists at least one color 𝑖 such that 𝑎 is not adjacent to any color 𝑖 vertices, and so we color 𝑎 with 𝑖 .

The above step can be repeated until every vertex is colored, and thus Γ is (Δ(Γ) + 1)-colorable. ■

One can observe that this bound is sharp in the case of complete graphs, 𝐾𝑛 , for all 𝑛 and cyclic graphs
(definitions below),𝐶𝑛 , for odd 𝑛. In fact, due to a result of Brooks [2] it is known that these two cases are

the only ones for which equality in Proposition 3.1 holds.

Theorem 3.2 (Brooks’ Theorem). If Γ is any graph other than a complete graph or a cyclic graph (defined
below) with odd order then

𝜒 (Γ) ≤ Δ(Γ) .

A complete graph on 𝑛 vertices, written as 𝐾𝑛 is the unique graph where all pairs of distinct vertices are

connected.

The spectrum of 𝐾𝑛 consists of two distinct eigenvalues, 𝑛 − 1 which has multiplicity 1 and −1 which

has multiplicity 𝑛 − 1 [3].
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Figure 2. The complete graph 𝐾4.

The cyclic graph on 𝑛 vertices, denoted by 𝐶𝑛 can be characterized by its edge set, which consists of all

2-sets of elements in [𝑛] that differ by 1 modulo 𝑛. It is seen to have the spectrum of numbers 2 cos(2𝜋𝑖/𝑛)
for 𝑖 ∈ [𝑛] (see [3]).

Figure 3. The cyclic graph 𝐶5.

To discuss the proofs contained within this paper, we must move our discussion to the spectral properties

of matrices.

4. Linear Algebraic Theorems

Recalling the linear algebraic notation from the previous section we state the following theorem.

Theorem 4.1 (Perron-Frobenius theorem). Let𝐴 be a non-negative irreducible 𝑛 by 𝑛 matrix with spectrum
𝜆1, . . . , 𝜆𝑛 and spectral radius 𝜌 . The following statements are all true.

(1) 𝜌 = 𝜆1.
(2) There is a positive vector v such that v is an eigenvector for 𝜆1.
(3) If 𝐴 is primitive then |𝜆𝑖 | < 𝜆1 for all 𝑖 ≠ 1.
(4) If |𝜆𝑖 | = 𝜆1 then 𝜆𝑖 is a scalar multiple of a𝑚th root of unit for some𝑚 ≤ 𝑛 (ie. 𝜆𝑚

1
= 𝜆𝑚𝑖 ). Additionally,

the spectrum of 𝐴 is invariant under multiplication by 𝑒2𝜋𝑖/𝑚 .
(5) If u ≠ 0 is a non-negative vector such that 𝐴u ≤ ℓu for some ℓ ∈ R, then u is positive and 𝜌 ≤ ℓ .
(6) If u is a non-negative eigenvector of 𝐴 then u is an eigenvector for 𝜆1.
(7) Any matrix 𝐵 which is constructed by deleting any number rows and columns of the same index from

𝐴 will have a smaller spectral radius than 𝐴.
5



A proof for this version of the Perron-Frobenius Theorem may be found in [3]. The matrix 𝐵 described

in the above theorem is called a principal submatrix of 𝐴.

Because adjacency matrices are always symmetric, we also use the following result from [6].

Theorem 4.2 (Specturm of symmetric matrices). If 𝐴 is an 𝑛 by 𝑛 real symmetric matrix then

(1) All the eigenvalues of 𝐴 are real and
(2) R𝑛 has an orthonormal basis consisting of eigenvectors of 𝐴.

Before we introduce our next theorem, we must define some vocabulary. For two decreasing sequences

of real numbers 𝑎1, . . . , 𝑎𝑛 and 𝑏1, . . . , 𝑏𝑚 with𝑚 < 𝑛 we say that 𝑏𝑖 interlaces 𝑎𝑖 if

𝑎𝑖 ≥ 𝑏𝑖 ≥ 𝑎𝑛−𝑚+𝑖 for all 𝑖 ∈ [𝑚] .

From [3] we have the following result.

Theorem 4.3 (Interlacing Eigenvalues). If 𝐵 is a principal submatrix of a symmetric matrix 𝐴 then the
eigenvalues of 𝐵 interlace the eigenvalues of 𝐴.

The next result we mention in this section is Parseval’s Theorem. The usefulness of this result is due to

the fact that our adjacency matrices are symmetric, and thus have an orthonormal basis of eigenvectors.

There are many proofs for this theorem of Parseval, one of which can be found in [6]. The statement of

the theorem is as follows.

Theorem 4.4 (Parseval’s Identity). If {v1, . . . , v𝑛} is an orthonormal basis of R𝑛 then for any x ∈ R𝑛 with

x =

𝑛∑︁
𝑖=1

𝑠𝑖v𝑖

we have that

| |x| |2
2
=

𝑛∑︁
𝑖=1

𝑠2

𝑖 .

Equivalently, if 𝑃 = [v1 . . . v𝑛] then | |v| |2
2
= | |𝑃𝑇v| |2

2
.

We will now use this theorem to prove a fact about real symmetric matrices.

Lemma 4.5. If 𝐴 is a real symmetric 𝑛 by 𝑛 matrix then for any v ∈ R𝑛 we have that

| |𝐴v| |2 ≤ ||v| |2𝜌 (𝐴)

where | | · | |𝑝 is the 𝐿𝑝 norm.

Proof. By Theorem 4.2 we have that 𝐴 is diagonalizable by a matrix 𝑃 such that the columns of 𝑃 form an

orthonormal basis of R𝑛 . This gives us that

𝐴 = 𝑃𝑇𝐷𝑃,

where 𝐷 is the diagonal matrix with the eigenvalues of 𝐴 across said main diagonal. So, we have that

| |𝐴v| |2 = | |𝑃𝑇𝐷𝑃v| |2.
6



Now by Theorem 4.4, the fact that 𝑃 and 𝑃𝑇 are orthogonal, and the definition of spectral radius we have

that

| |𝐴v| |2 = | |𝑃𝑇𝐷𝑃v| |2
= | |𝐷𝑃v| |2
≤ 𝜌 (𝐴) | |𝑃v| |2
= 𝜌 (𝐴) | |v| |2,

and so our claim is proven. ■

With linear algebraic tools now at our disposal, we now move towards the focus of our paper, the

intersection of these tools with graph theory.

5. Spectral Ineqalities for Graphs

Just as the Perron-Frobenius theorem is one of the most important tools in spectral linear algebra, the

same is true for spectral analysis in graph theory. As such, we have our own “graph theoretic” Perron-

Frobenius theorem.

Theorem 5.1 (Proposition 3.1.1 in [3]). For any graph Γ with adjacency matrix 𝐴 having spectral radius
𝜌 = 𝜆1, removing vertices or edges from Γ does not increase the spectral radius. Additionally, if is𝐴 is strongly
connected we have that

(1) Removing vertices or edges from Γ decreases 𝜌 ,
(2) 𝜆1 has multiplicity 1, and
(3) if 𝐴 is primitive then |𝜆𝑖 | < 𝜌 for all 𝑖 ≠ 1.

This follows from Theorem 4.1, as demonstrated in [3], and will be one of the keystones in the proofs

we present. For this reason, it is stated as a theorem, as it will be more pertinent to reference this result

rather than Theorem 4.1 when discussing graph-theoretic results.

We say that a subgraph Γ′ = (𝑉 ′, 𝐸′) of Γ = (𝑉 , 𝐸) is induced, if

𝐸′ = {(𝑣1, 𝑣2) | 𝑣1, 𝑣2 ∈ 𝑉 , (𝑣1, 𝑣2) ∈ 𝐸}.

Equivalently, the adjacency matrix of Γ′ is a principle submatrix of 𝐴Γ , and so with this definition, we

conclude the following as a result of Theorem 4.3.

Theorem 5.2. If Γ′ is an induced subgraph of Γ then the eigenvalues of Γ′ interlace the eigenvalues of Γ.

One of the simplest consequences of

Lemma 5.3 (Proposition 3.1.2 in [3]). If Γ is a connected graph with spectral radius 𝜌 . If Γ is regular then
𝜌 = Δ(Γ). Otherwise

𝛿 (Γ) < 𝜇 (Γ) < 𝜌 < Δ(Γ).

If Γ is not necessarily connected, then 𝛿 (Γ) ≤ 𝜇 (Γ) ≤ 𝜌 ≤ Δ(Γ).

Proof. For brevity will only prove the rightmost inequality in the second assertion. A full proof can be

found in [3].
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Let 𝐴 be the adjacency matrix of a graph Γ with order 𝑛, and let 1 be the vector in R𝑛 that consists of

all 1’s. By Theorem 4.1 (4) we have that 𝐴1 ≤ Δ(Γ)1 with equality if and only if Δ(Γ) = 𝜌 , but it is also

seen that equality holds if and only if Γ is 𝜌-regular. ■

Proposition 5.4 (Proposition 3.6.1 in [3]). If Γ is a complete graph on 𝑛 vertices then 𝜒 (Γ) = 𝑛, and if Γ is
an cyclic graph of odd order then 𝜒 (Γ) = 3.

If Γ is a graph with spectral radius 𝜌 and Γ is not a complete graph or an odd cycle we have that

𝜒 (Γ) < 𝜌 + 1.

Proof. Note that there must be some subgraph Γ′ of Γ of minimum degree at least 𝜒 (Γ) − 1. Via Theorem

5.2 we have that

𝜒 (Γ) − 1 ≤ 𝛿 (Γ′) ≤ 𝜌 (𝐴Γ′) ≤ 𝜌 (𝐴Γ) .

From this, we have that 𝜒 (Γ) ≤ 𝜌 (𝐴Γ) + 1 with equality only if Γ = Γ′ via Theorem 5.1 (1). But this implies

that 𝛿 (Γ) = 𝜌 (𝐴Γ), which by Lemma 5.3 implies that Γ is regular, and so in this case 𝜌 (𝐴Γ) = Δ(Γ) + 1, but

this is true only when Γ is cyclic of odd order or complete by Theorem 3.2 and so our claim is proven. ■

A graph Γ = (𝑉 , 𝐸) is said to be bipartite if there is a partition of𝑉 = 𝑉1 ∪𝑉2 such that every edge 𝑒 ∈ 𝐸
with 𝑒 = {𝑎, 𝑏} has that (up to symmetry) 𝑎 ∈ 𝑉1 and 𝑏 ∈ 𝑉2. This partition is called a bipartition. There

are many characterizations of bipartiteness that we characterize in Proposition 5.5. These equivalences

appear throughout [3] scattered and mostly without proof. For this reason, we prove and organize these

characterizations.

Proposition 5.5. Let Γ be a (simple) graph, with spectrum 𝜆1, . . . , 𝜆𝑛 . The following are equivalent

(1) Γ is bipartite.

(2) 𝐴Γ takes the form

(
0 𝐵

𝐵𝑇 0

)
.

(3) −𝜆𝑖 = 𝜆𝑛−𝑖+1 for all 𝑖 ∈ [𝑛].
(4) If Γ is connected then −𝜆1 = 𝜆𝑛 .
(5) No cycle of any odd length is contained in Γ.
(6) If Γ is connected, then 𝐴Γ is not primitive.
(7) 𝜒 (Γ) ≤ 2 with equality for all Γ that are not edgeless.

Proof. Let Γ be bipartite of order 𝑛 with bipartition 𝑉 = 𝑉1 ∪𝑉2 such that 𝑉 = [𝑚] with𝑚 ≤ 𝑛. Since Γ is

bipartite if we let𝐴Γ = (𝑎𝑖 𝑗 ) it is seen that if 𝑖 and 𝑗 are both less than or equal to𝑚 then 𝑎𝑖 𝑗 = 0. Similarly,

if both 𝑖 and 𝑗 are greater than𝑚 then we also have that 𝑎𝑖 𝑗 = 0. Thus, we have that𝐴 =

(
0 𝐵

𝐶 0

)
. However,

because Γ is not a directed graph, we have that 𝐴𝑇 = 𝐴, and so 𝐶 = 𝐵𝑇 . Thus, we have that (1) implies (2).

Similarly, if we have𝐴Γ =

(
0 𝐵

𝐵𝑇 0

)
such that 𝐵 has𝑚 columns then it is seen that if 𝑒 ∈ 𝐸 with 𝑒 = {𝑎, 𝑏}

then we must have either that 𝑎 ≤ 𝑚 and 𝑏 > 𝑚 or 𝑎 > 𝑚 and 𝑏 ≥ 𝑚. Thus, the partition 𝑉 = 𝑉1 ∪𝑉2 with

𝑉1 = [𝑚] and 𝑉2 = [𝑚 + 1, 𝑛] is a bipartition of Γ, and so Γ is bipartite. Thus, it is seen that (2) implies (1),

and so they are equivalent.
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Now, see that if Γ is bipartite with adjacency matrix 𝐴 =

(
0 𝐵

𝐵𝑇 0

)
with eigenvector v =

(
𝑎

𝑏

)
and

associated eigenvalue 𝜆 it is seen that v =

(
𝑎

−𝑏

)
is also an eigenvector with respect to𝐴Γ but with associated

eigenvalue −𝜆, and this generalizes to the entire spectrum of𝐴Γ , and so we have that (1) implies (3) as well

as (4).

Note that if we have 𝜆1 = −𝜆𝑛 , then by Theorem 4.1, Γ cannot be primitive, and (4) so implies (6).

Additionally since (1) implies (4) transitively, it is seen that (1) implies (6).

Let us say that a connected graph Γ = (𝑉 , 𝐸) is 𝑘-primitive if 𝐴𝑘Γ is positive. By definition, if Γ is

primitive, then it must be 𝑘-primitive for some 𝑘 ∈ N. Since 𝐴Γ is connected, it has no zero columns, and

so 𝐴𝑘+1

Γ is positive. So, we have that if Γ is primitive then there exists some odd natural number 𝑘0 such

that Γ is 𝑘0-primitive. Thus, for any vertex 𝑣∗ there is a walk of on length 𝑘0 from 𝑣∗ to itself. Thus, there

exists some walk of minimum odd length 𝑘min from 𝑣∗ to 𝑣∗. That is, if ℓ ≤ 𝑘min and there exists a walk𝑊

of odd length from 𝑣∗ to 𝑣∗ then ℓ = 𝑘min. Since𝑊 is minimal in length with respect to odd walks, it cannot

contain a cycle of even length, as such a cycle can be contracted down to a single point while preserving

the parity of the walk’s length. Thus, one of two things must be true either (i) every vertex in𝑊 except

the start/end is distinct, and thus𝑊 itself is a cycle or𝑊 contains a cycle, which by the above must be of

odd length. Either way, the implication that Γ contains a cycle of odd length arises and so we have that (5)

implies (6).

Now, observe that if Γ = (𝑉 , 𝐸) is connected, then for all sufficiently large 𝑁 ∈ N, there exists a path of

length 𝑁 between any pair of vertices in 𝑉 as long as 𝑁 is divisible by the greatest common divisor of all

cycle lengths found in Γ. Additionally, since Γ is connected not directed, as long as Γ contains more than

one vertex, a 2-cycle always exists by going from a starting vertex to a different vertex and back to the

start again. Thus, if Γ contains an odd cycle, then it is primitive. From this, we have that (6) implies (5).

Now, we prove that if no odd cycle lies in Γ, then it is bipartite. I claim that the parity of the length of

a walk between any pair of connected vertices 𝑣1 and 𝑣2 is consistent regardless of the walk itself. Indeed,

there are two walks of length ℓ1 and ℓ2 respectively each with different parity, both between 𝑣1 and 𝑣2 then

there exists a length ℓ1 + ℓ2 path from 𝑣1 to itself. Since ℓ1 and ℓ2 have different parities, there exists an

odd length walk from 𝑣1 to itself, and by the same argument as (5) =⇒ (6), Γ must contain an odd cycle,

which is a contradiction to the original assumption. Thus, all paths between a fixed connected vertex pair

have the same parity. Now for any maximal connected subgraph Γ′ = (𝑉 ′, 𝐸′) of Γ we do as follows. First,

select an arbitrary vertex 𝑣 of Γ′. By the above, the set of vertices 𝑉 ′
1

which possess a path of odd length

from 𝑣 is disjoint from the set of vertices𝑉 ′
2

which possess a path of even length from 𝑣 , and because Γ′ is

connected it follows that 𝑉 ′
1
∪𝑉 ′

2
is a partition of Γ′. This partition is also seen to be a valid bipartition as

no two vertices in𝑉𝑖 may be adjacent as if they were then that would imply that there is some 𝑥 such that

𝑥 and 𝑥 + 1 have the same parity, which is impossible. Thus, we have that (5) implies (1).

We now show that (3) implies (1). Let Γ be a graph with a spectrum 𝜆1 ≥ · · · ≥ 𝜆𝑛 satisfying the

condition in (3). Note that, for odd 𝑘 , the spectrum of 𝐴𝑘Γ is 𝜆𝑘
1
≥ · · · ≥ 𝜆𝑘𝑛 . However, because 𝑘 is odd, we

have that (−𝜆𝑖)𝑘 = −𝜆𝑘𝑖 , and so we have that

tr(𝐴𝑘Γ) = 𝜆𝑘1 + · · · + 𝜆𝑘𝑛 = 0.
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From this, and the fact that 𝐴𝑘Γ is non-negative we have that the diagonal of 𝐴𝑘Γ must be all zeroes, and

thus Γ contains no 𝑘-cycles for any odd 𝑘 . Thus, (3) implies (5), and because (5) implies (1), we have that

(1) and (3) are equivalent.

Now, if we let Γ be connected with 𝜆1 + 𝜆𝑛 = 0, then by Theorem 4.1 it follows that the entire spectrum

of Γ is invariant under multiplication by −1, and so (3) is seen to be equivalent to (4).

Finally, see that 𝜒 (Γ) = 1 if and only if Γ is edgeless, in which case Γ is trivially bipartite. In general,

we observe that, via the definitions, bipartite is equivalent to 2-colorable, as the bipartition is itself the

coloring. This gives us the final equivalence of (1) and (7).

■

The complete bipartite graph on𝑚 and 𝑛 vertices , written as 𝐾𝑚,𝑛 is the unique bipartite graph on𝑚 +𝑛
vertices such that the bipartite partition 𝑉 = 𝑉1 ∪𝑉2 has |𝑉1 | =𝑚 and |𝑉2 | = 𝑛 with

𝐸 = {{𝑎, 𝑏} | 𝑎 ∈ 𝑉1, 𝑏 ∈ 𝑉2}.

One can observe that the spectrum of a complete bipartite graph consists of the eigenvalues ±
√
𝑚𝑛, each

with multiplicity 1 as well as 0 with multiplicity𝑚 + 𝑛 − 2[3].

Figure 4. The complete bipartite graph 𝐾3,3

It turns out, that the property rank(𝐴Γ) = 2 is a property that no other graphs possess. We prove this

in Lemma 5.6, below.

Lemma 5.6. If Γ is a connected graph we have that rank(𝐴Γ) = 2 if and only if Γ is complete bipartite.

Proof. The if direction swiftly follows from the fact that the adjacency matrix of 𝐾𝑚,𝑛 is

𝐴𝐾𝑚,𝑛
=

(
0 1𝑚×𝑛

1𝑛×𝑚 0

)
which has exactly two distinct columns, both of which are non-zero.

Note that, if Γ′ is an induced subgraph of Γ then

rank(𝐴Γ) ≥ rank(𝐴Γ′) .

By Proposition 5.5, if Γ is not bipartite, it must contain an odd cycle. In any graph Γ with an odd cycle

subgraph, it is true that any minimum length odd cycle is an induced subgraph of Γ. This can be seen as

for any given minimum length odd cycle subgraph, it cannot contain a chord connecting any pair of its

vertices, as that chord would yield a smaller odd cycle. Indeed, it can be seen that for odd 𝑛, rank(𝐴𝐶𝑛
) = 𝑛.

Thus, Γ is bipartite. Now, note that if Γ is bipartite with more than one edge (If Γ has only one edge but

is connected then it is obvious that Γ = 𝐾1,1, and thus is complete bipartite.) but is not complete bipartite,

10



then there exists some pair of edges {𝑣1, 𝑣2} and {𝑣3, 𝑣4} such that 𝑣1 is not adjacent to either of 𝑣3 or 𝑣4.

This implies that Γ has an induced subgraph Γ′ which has adjacency matrix equal to either

©­­­­«
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

ª®®®®¬
or

©­­­­«
0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

ª®®®®¬
.

In either case, rank(𝐴Γ′) = 4, and so Γ must be complete bipartite. ■

If a graph Γ is of the form 𝐾1,𝑑 then we say that Γ is a star graph.

As for additional bounds on 𝜌 (Γ), we have the following known bound (see [5]) for which we charac-

terize equality.

Proposition 5.7. For a connected graph Γ with maximum degree Δ and adjacency matrix𝐴 that has spectral
radius 𝜌 we have that √

Δ ≤ 𝜌

with equality if and only if Γ is a star graph.

Proof. Let v be the vector with 1 at the index of some vertex with maximum degree. Via Lemma 4.5 we

have that √
Δ = | |𝐴v| |2 ≤ 𝜌 | |v| |2 = 𝜌 (𝐴) .

Now, we demonstrate the conditions for equality holding in our claim. Assume that

√
Δ = 𝜌 .

Since 𝐴 is symmetric, there exists an orthonormal basis of R𝑛 , {u1, . . . , u𝑛} consisting only of eigenvec-

tors of 𝐴. Let v = 𝑠1u1 + · · · + 𝑠𝑛u𝑛 . Since u𝑖 are all eigenvectors of 𝐴 we have that

𝐴v =

𝑛∑︁
𝑖=1

𝑠𝑖𝜆𝑖u𝑖 .

Via Theorem 4.4 we must have that

| |v| | = 1 =

𝑛∑︁
𝑖=1

𝑠2

𝑖

and

| |𝐴v| |2 = 𝜌2 =

𝑛∑︁
𝑖=1

(𝜆𝑖𝑠𝑖)2 ≤ 𝜌2

𝑛∑︁
𝑖=1

𝑠2

𝑖 .

See that equality holds in the above if and only if |𝜆𝑖 | = 𝜌 for all 𝑠𝑖 ≠ 0, and since 1 =
∑𝑛
𝑖=1
𝑠2

𝑖 equality

clearly does hold and so 𝑠𝑖 is zero for all 𝑖 except for those with 𝜆𝑖 = ±𝜌 . Now, by Proposition 5.5 we have

that either Γ is bipartite, in which case the spectrum of Γ is {𝜌, 0, . . . , 0,−𝜌} or that Γ is primitive.

In the latter case, we would have that v = u1, but this cannot be as u1 is strictly positive via Theorem

4.1 and v1 is not strictly positive.

Thus, Γ is bipartite and the spectrum of Γ must be exactly {𝜌, 0, . . . , 0,−𝜌}. Since 0 has multiplicity

𝑛 − 2 and Γ is connected it is seen that Γ is indeed complete bipartite via Lemma 5.6, and so we have that

𝜌 =
√︁
Δ(𝑛 − Δ), but we have that 𝜌 = Δ, and so Δ = 𝑛 − 1, implying that Γ is a star graph. If Γ is in fact a

star graph it is easy to see that it satisfies Δ = 𝜌2
, and so our claim is proven.

■

This result can reformed into the following bound.
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Corollary 5.8. If Γ is a connected graph with order 𝑛, maximum degree Δ, and spectral radius 𝜌 we have
that

Δ
√
𝑛 − 1

≤ 𝜌

with equality if and only if Γ is a star graph.

Proof. Note that

Δ ≤ 𝑛 − 1,

and from this we get that

Δ2 ≤ (𝑛 − 1)Δ.

Via Proposition 5.7 we now have that

Δ ≤
√
𝑛 − 1

√
Δ ≤ 𝜌

√
𝑛 − 1,

and so

Δ/
√
𝑛 − 1 ≤ 𝜌.

■

While the result in Proposition 5.7 is as good or better than the bound from Corollary 5.8, I find that both

results are enlightening, at least slightly as they express how different tangible quantities may affect the

spectral radius (a relatively intangible quantity). In general, bounds on eigenvalues relative to the vertex

degrees seem rather interesting, and of specific interest to myself is the following.

Question 5.9. Is there a nice characterization for graphs with maximum degree Δ with spectral radius 𝜌

satisfying

𝑐
√
Δ ≥ 𝜌 ≥

√
Δ

for some fixed 𝑐 ∈ R?

More specifically, one may want to tackle this question:

Question 5.10. Are there finitely many connected graphs with maximum degree Δ and spectral radius 𝜌

satisfying

√
Δ + 1 ≥ 𝜌 ≥

√
Δ,

and if so, what are they?

In regards to Question 5.10, the author believes that there are finitely many such graph, that they are

all bipartite. For the case of Δ = 3 one could utilize Theorem 6.2 in order to obtain such a classification,

notably, though, the answer given by this result is that there are infinitely many such graphs. Any proof

for Δ ≥ 4 remains elusive.

Proposition 5.11. If Γ is a connected graph with smallest eigenvalue 𝜆𝑛 we have that

𝜆𝑛 ≤ −
√

2

as long Γ is not complete, if Γ is complete then 𝜆𝑛 = −1.
12



Proof. For the if direction it is seen that equality does hold if Γ is complete. Consider some graph of order𝑛,

Γ. It suffices to assume Γ is not complete. By the connectivity of Γ we have that 𝑃3 is an induced subgraph

of Γ. Thus, by Theorem 5.2, we have that −
√

2 ≥ 𝜆𝑛 as −
√

2 is the smallest eigenvalue of 𝑃3[3], and so our

claim follows.

■

While this result is certainly interesting, it is not quite substantial. However, this next result is much

more enticing to discuss.

6. A Smith-like Spectral Characterization for Graphs

Before moving into the promised characterizations, we will define a couple classes of graphs. The path
graph 𝑃𝑛 = (𝑉 , 𝐸) on 𝑛 vertices is the unique graph with

𝐸 = {{𝑖, 𝑖 + 1} | 𝑖 ∈ [𝑛 − 1]}.

Its spectrum consists of the numbers of the form 2 cos

(
𝜋𝑖
𝑛+1

)
for 𝑖 ∈ [𝑛] [3].

Figure 5. The path graph 𝑃4.

The racquet graph, 𝑅𝑛 is a 𝑛 + 1 vertex graph equal to a cycle graph with a single additional vertex

attached to the cycle at one vertex. It has the adjacency matrix

𝐴 = (𝑎𝑖 𝑗 ) where 𝑎𝑖 𝑗 =


1 𝑖, 𝑗 ≤ 𝑛 and |𝑖 − 𝑗 | is 1 mod 𝑛;

1 {𝑖, 𝑗} = {𝑛, 𝑛 + 1};
0 otherwise.

Figure 6. The Racquet Graph 𝑅5.

The spectral properties of 𝑅𝑛 are not well known, but we will prove the following lemma which will be

of great importance in the main result of this section.

Lemma 6.1. When 𝜆1 − 𝜆𝑛+1 ≤ 4 for eigenvalues of 𝑅𝑛+1, we have that 𝑛 = 3 or 𝑛 = 5.
13



Proof. Let v be the all-ones vector in R𝑛+1
. By Lemma 4.5

| |𝐴v| | ≤ 𝜆1 | |v| |

but since | |v| | =
√
𝑛 + 1 and | |𝐴v| | =

(
1

2 + 3
2 + (𝑛 − 1)22

)
1/2

=
√

4𝑛 + 6, and so√︂
4𝑛 + 6

𝑛 + 1

≤ 𝜆1.

So, if 𝜆1 − 𝜆𝑛+1 ≤ 4 then we have that √︂
4𝑛 + 6

𝑛 + 1

− 𝜆𝑛+1 ≤ 4,

but by Theorem 5.2 and the fact that 𝑃𝑛 is an induced subgraph of 𝑅𝑛 , this gives us that√︂
4𝑛 + 6

𝑛 + 1

+ 2 cos(𝜋/(𝑛 + 1)) ≤ 4.

It is well known that cos(𝜃 ) ≥ 1 − 𝜃 2

2
, and so we have that√︂

4𝑛 + 6

𝑛 + 1

≤ 2 + 𝜋2

(𝑛 + 1
2) .

We may square both sides to get

4 + 2

𝑛 + 1

≤ 4 + 4𝜋2

(𝑛 + 1)2
+ 𝜋4

(𝑛 + 1)4

Letting 𝑋 = 𝑛 + 1, this is equivalent to

2𝑋 3 − 4𝜋2𝑋 2 − 𝜋4 ≤ 0.

Via analyzing the roots of this polynomial, it is seen that this is true when 𝑋 ≤ 20.

Thus, we must have that 𝑛 ≤ 21 if 𝜆1 − 𝜆𝑛 ≤ 4. Computational analysis on the adjacency matrix of 𝑅𝑛

for 𝑛 ≤ 21 reveals that the only values of 𝑛 that this inequality holds for are 𝑛 = 3 and 𝑛 = 5. ■

In 1970, Smith [7] determined all graphs that have a spectral radius less than or equal to 2. For this

reason, we call graphs with this property Smith Graphs.

Theorem 6.2 (Characterization of Smith Graphs). If 𝜌 (Γ) ≤ 2 then Γ must be a subgraph of either a cyclic
graph, 𝐷𝑛 for 𝑛 ≥ 4, 𝐸6, 𝐸7, or 𝐸8 (see Appendix A for definitions of these graphs).

These graphs are not only interesting from a spectral standpoint but within Lie Groups as they can all be

identified with Dynkin Diagrams of finite Coxeter groups, and are of great importance to the classification

of finite simple groups [3].

It should be noted that Theorem 4.1, if the largest eigenvalue of Γ is less than or equal to 2 then we have

that 𝜆1 − 𝜆𝑛 ≤ 4. However, the converse of this statement is seen to not be true via the witness 𝐾4.

Theorem 6.3. If Γ is a connected graph with spectrum 𝜆1, . . . , 𝜆𝑛 and 𝜆1 −𝜆𝑛 ≤ 4 then either Γ is a connected
subgraph of a Smith graph or it is one of 𝐾4, 𝑅3, 𝑅5, A, or J (see Figure 9 for the latter two).

Proof. 𝜆1 − 𝜆𝑛 ≤ 4 implies either that 𝜆1 ≤ 2 or that 𝜆1 > 2 and 𝜆1 > −2. If 𝜆1 ≤ 2, by Theorem 6.2 it

follows that Γ is a connected subgraph of a Smith graph. So, it suffices to consider when 𝜆1 > 2. In this

case, since 𝜆1 > 2 we have that Γ cannot be bipartite by Proposition 5.5 (4).
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Since Γ is not bipartite it contains a minimal odd cycle of length 𝑡 , which via minimality implies that𝐶𝑡

is an induced subgraph of Γ. As long as Γ itself is not cyclic then there must be some other vertex 𝑣 of Γ

which is itself adjacent to some vertex in the minimal cyclic subgraph, but itself does not lie in the cycle.

Additionally, we should note that if 𝑣 is adjacent to more than a single vertex in𝐶𝑡 then there exists a cycle

in Γ if length at most (𝑡 + 3)/2, and by the minimality of 𝑡 we must have that (𝑡 + 3)/2 ≤ 𝑡 , and so we must

have that at least one of the following holds:

• 𝑅𝑡 is an induced subgraph of Γ,

• 𝐾4 is an induced subgraph of Γ,

• or D (See Figure 7) is an induced subgraph of Γ.

Via Theorem 5.1 and Theorem 5.2, if Γ′ is one of the induced subgraphs described above having largest and

smallest eigenvalues 𝜇1 and 𝜇𝑛 respectively then we must have that 𝜇1 − 𝜇𝑛 ≤ 4 with equality if and only

if Γ = Γ′. With this, we see that if Γ′ = D, then 𝜇1 − 𝜇𝑛 > 4, and so this is not a possibility. If Γ′ = 𝐾4 then

𝜇1 − 𝜇𝑛 = 4 and we must have that Γ′ = Γ = 𝐾4.

Figure 7. The diamond graph D .

So, if Γ ≠ 𝐾4 then we must have that 𝑅𝑡 is an induced subgraph of Γ. Thus, by Theorem 5.2 and Lemma

6.1, we have that Γ has either a triangle or a 5-cycle.

Assume Γ has a 5-cycle, but Γ ≠ 𝑅5. Thus, there exists some vertex 𝑣∗ in Γ that is adjacent to the induced

𝑅5 subgraph, but itself is not a member of it. Thus, we see that Γ must have one of the three subgraphs

in Figure 8. Letting 𝜇1 be the largest eigenvalue of the seven vertex graph in question, and let 𝜈6 be the

smallest eigenvalue of 𝑅5. Via Theorem 4.1 and Theorem 5.2 we have that

4 − 𝜇1 ≤ 𝜆𝑛 ≤ 𝜈6.

Checking all each value of 𝜇1, we see that this is never true, and so if Γ has a 5-cycle then Γ = 𝑅5.
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Figure 8. Potential 5-cycle subgraphs of Γ

A similar procedure is performed on Γ with a three-cycle, and it is seen that Γ must have an induced

subgraph that is one of the two graphs in Figure 9. Upon repeating this process on each of A and J , we

get that no vertices can be added without violating 𝜆1 − 𝜆𝑛 ≤ 4.

Figure 9. Potential 3-cycle induced subgraphs. The graph A (left) and the graph J (right).

■

The actual largest and smallest eigenvalues of the five non-smith graphs satisfying 𝜆1 − 𝜆𝑛 ≤ 4 are

cataloged in the table below.
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Γ 𝜆1 𝜆𝑛 𝜆1 − 𝜆𝑛
𝐾4 3 −1 4

𝑅3 ≈ 2.17 ≈ −1.48 ≈ 3.65

A (1 +
√

13)/2 −(1 +
√

5)/2 (2 +
√

13 +
√

5)/2 ≈ 3.92

J ≈ 2.21 ≈ −1.68 ≈ 3.71

𝑅5 ≈ 2.11 ≈ −1.86 ≈ 3.97

Table 1. The actual value of 𝜆1 − 𝜆𝑛 for the five graphs classified by Theorem 6.3.

Conjecture 6.4. There are a finite number of connected non-smith graphs that satisfy 𝜆1 − 𝜆𝑛 ≤ 3

√
2.

Using the search feature on houseofgraphs.org, (see [4]) we find that at least 41 graphs in addition to

the five from Theorem 6.3 satisfy this criterion. To prove this, one could likely follow a similar process to the

proof of Theorem 6.3, but two major hurdles would need to be overcome. The first of these obstacles is the

fact that there are non-smith bipartite graphs that meet this criterion, this adds a whole other dimension to

this theoretic proof. The second obstacle one would need to overcome is to determine a much better bound

on this “spectral length” for Racquet graphs, as the one from Lemma 6.1 is not very good. Or alternatively,

an entirely different proof route may be optimal. Another conjecture that I have that seems to be true is

tangentially related to Theorem 6.2, but concerns a different classification entirely.

Conjecture 6.5. If Γ is regular, 𝜆𝑛 > −2 and 𝜆1 > 2 then Γ is complete.

Appendix A. Smith Graphs

This appendix serves to illustratively define the graphs mentioned in Theorem 6.2.

Figure 10. The graph 𝐷𝑛 has 𝑛 + 1 vertices and is defined for 𝑛 ≥ 4.

Apart from the family 𝐷𝑛 , we provide visual definitions 3 more individual graphs.
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Figure 11. The graphs 𝐸6 (left), 𝐸7 (right), and 𝐸8 (bottom).

The spectral radius of all of 𝐷𝑛 , 𝐸6, 𝐸7, and 𝐸8 have spectral radius of exactly 2, and along with 𝐶𝑛 (the

cyclic graph on 𝑛 vertices) form the complete set of graphs with spectral radius 2 [7].
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