Challenge Problems 3

Jacob Terkel

January 13, 2022

Problem Index

Problem	1	2	3	4	5	6
Difficulty/10	7.5±1	7	6	2	2.5	1.5
Category	NT	CO	NT	GM	PB	NT

Key:

- NT: Number Theory
- PB: Probability

- CO: Combinatorics
- GM: Geometry
- 1. Let $\mathbb P$ be the set of positive integer primes. The set of positive integers k that satisfy $|\mathbf P_k|=1$ where

$$\mathbf{P}_{k} = \{ a \mid a \in \mathbb{Z}_{k}, a \equiv p^{2} \ (k) \text{ for infinitely many } p \in \mathbb{P} \}$$

is equivalent to the set of divisors of positive divisors of 24.¹

- (a) Classify when $|\mathbf{P}_k| \leq 3$.
- (b) Now let

$$\mathbf{P}'_{k} = \{ a \mid a \in \mathbb{Z}_{k}, a \equiv p^{3}(k) \text{ for infinitely many } p \in \mathbb{P} \}.$$

Show that if $k \ge 3$ then $|\mathbf{P}'_k| > 1$.

- (c) Find when $|\mathbf{P}'_k| \leq 4$
- 2. How many possible ways are there to move from the origin, (0,0), to (5,5) with the movement options $\{(2,0), (1,0), (0,1), (0,2)\}$?
- 3. Let k be an integer greater than 2. Find a set of necessary and sufficient conditions on k such that there are exactly three distinct integer values of n between 1 and k exclusive such that there is an integer m where

$$n^2 - 1 = mk.$$

- 4. Let *a* and *b* be known lengths of a triangle's edges, and let *A* be the known angle opposite of the side *a*. Find a set of conditions on *A*, *a*, and *b* such that all triangles that meet these conditions with the parameters described above are congruent.
- 5. Suppose a \$1 slot machine has a $\frac{1}{10^n}$ % chance of resulting in a jackpot for some integer $n \ge 1$. At this particular slot machine every 10 spins you are awarded a free spin. Let P(n) be the probability that you win at least one jackpot after spending 10^n dollars. Find $\lim_{n\to\infty} P(n)$.
- 6. Prove that every prime number other than 2 and 5 divides an infinite amount of numbers of the form 11....11 (11, 111, 1111, etc.).

¹My inspiration for this problem.