Challenge Problems 3

Jacob Terkel

January 13, 2022

Problem Index

Problem	1	2	3	4	5	6
Difficulty $/ 10$	7.5 ± 1	7	6	2	2.5	1.5
Category	NT	CO	NT	GM	PB	NT

Key:

- NT: Number Theory
- PB: Probability
- CO: Combinatorics
- GM: Geometry

1. Let \mathbb{P} be the set of positive integer primes. The set of positive integers k that satisfy $\left|\mathbf{P}_{k}\right|=1$ where

$$
\mathbf{P}_{k}=\left\{a \mid a \in \mathbb{Z}_{k}, a \equiv p^{2}(k) \text { for infinitely many } p \in \mathbb{P}\right\}
$$

is equivalent to the set of divisors of positive divisors of $24 .{ }^{1}$
(a) Classify when $\left|\mathbf{P}_{k}\right| \leq 3$.
(b) Now let

$$
\mathbf{P}_{k}^{\prime}=\left\{a \mid a \in \mathbb{Z}_{k}, a \equiv p^{3}(k) \text { for infinitely many } p \in \mathbb{P}\right\}
$$

Show that if $k \geq 3$ then $\left|\mathbf{P}_{k}^{\prime}\right|>1$.
(c) Find when $\left|\mathbf{P}_{k}^{\prime}\right| \leq 4$
2. How many possible ways are there to move from the origin, $(0,0)$, to $(5,5)$ with the movement options $\{(2,0),(1,0),(0,1),(0,2)\}$?
3. Let k be an integer greater than 2 . Find a set of necessary and sufficient conditions on k such that there are exactly three distinct integer values of n between 1 and k exclusive such that there is an integer m where

$$
n^{2}-1=m k
$$

4. Let a and b be known lengths of a triangle's edges, and let A be the known angle opposite of the side a. Find a set of conditions on A, a, and b such that all triangles that meet these conditions with the parameters described above are congruent.
5. Suppose a $\$ 1$ slot machine has a $\frac{1}{10^{n}} \%$ chance of resulting in a jackpot for some integer $n \geq 1$. At this particular slot machine every 10 spins you are awarded a free spin. Let $P(n)$ be the probability that you win at least one jackpot after spending 10^{n} dollars. Find $\lim _{n \rightarrow \infty} P(n)$.
6. Prove that every prime number other than 2 and 5 divides an infinite amount of numbers of the form 11.... 11 (11, 111, 1111, etc.).
[^0]
[^0]: ${ }^{1} \mathrm{My}$ inspiration for this problem.

