Challenge Problems Jacob Terkel November 9, 2021

Problem Index

Problem	1	2	3	4	5	6	7	8	9	10
Difficulty/10	7	7	5	8	5	4	5	6	8.5	4
Category	NT	AL	AN	CO	NT	GM	NT	NT	AN	NT

Key:

- NT: Number Theory
- AL: Algebra
- AN: Analysis
- CO: Combinatorics
- GM: Geometry
 - 1. Prove that the equation

$$\binom{m}{3} + \binom{m}{2} + \binom{m}{1} + 1 = 2^n$$

only has finitely many solutions for positive integers *m* and *n*.

- 2. Given some Gaussian integer $a \in \mathbb{Z}[i]$ show that the group of Gaussian integers mod a is cyclic under addition if a is a Gaussian prime with both real and imaginary components non-zero.
- 3. Show that the quantity

$$a = \sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{4 + \sqrt{\cdots}}}}}$$

exists, ie. the above nested radical converges onto a real number.

- 4. Prove that in any set *A* of 7 numbers with different remainders when divided by 15, there exists $a, b, c \in A$ such that a + b + c is divisible by 15. (a, b, c need not be distinct).
- 5. Find all positive integer solutions to

 $a^2 - b^2 = 2^k$

where both *a* and *b* are odd.

- 6. Prove that the square is the only regular polygon with side length 1 that has integer area.
- 7. Prove that

$$1^3 + 2^3 + \dots + n^3$$

is never prime.

- 8. Determine when the polynomial $f(x) = x^3 + 2abx^2 + ax$ has only real rational roots for $a, b \in \mathbb{Z}$.
- 9. Equations of the form

$$x^3 + y^3 + ax^2 + by^2 + cxy = 0$$

sometimes have two self intersections, find the conditions for this occurring (in terms of an equation or inequality containing only *a*, *b* and *c* as variables) and the points of self intersection in terms of *a*, *b* and *c*).

10. Let *p* be some prime not equal to 2 or 5. Prove that $\frac{1}{p}$ cannot be represented as a terminating decimal in base 10, and prove that ℓ_{10} , the period of the decimal's repeating cycle, divides p - 1.