Problem Index

Problem	1	2	3	4	5	6	7	8	9	10
Difficulty $/ 10$	7	7	5	8	5	4	5	6	8.5	4
Category	NT	AL	AN	CO	NT	GM	NT	NT	AN	NT

Key:

- NT: Number Theory
- AL: Algebra
- AN: Analysis
- CO: Combinatorics
- GM: Geometry

1. Prove that the equation

$$
\binom{m}{3}+\binom{m}{2}+\binom{m}{1}+1=2^{n}
$$

only has finitely many solutions for positive integers m and n.
2. Given some Gaussian integer $a \in \mathbb{Z}[i]$ show that the group of Gaussian integers mod a is cyclic under addition if a is a Gaussian prime with both real and imaginary components non-zero.
3. Show that the quantity

$$
a=\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{\cdots}}}}}
$$

exists, ie. the above nested radical converges onto a real number.
4. Prove that in any set A of 7 numbers with different remainders when divided by 15 , there exists $a, b, c \in$ A such that $a+b+c$ is divisible by 15. (a, b, c need not be distinct).
5. Find all positive integer solutions to

$$
a^{2}-b^{2}=2^{k}
$$

where both a and b are odd.
6. Prove that the square is the only regular polygon with side length 1 that has integer area.
7. Prove that

$$
1^{3}+2^{3}+\cdots+n^{3}
$$

is never prime.
8. Determine when the polynomial $f(x)=x^{3}+2 a b x^{2}+a x$ has only real rational roots for $a, b \in \mathbb{Z}$.
9. Equations of the form

$$
x^{3}+y^{3}+a x^{2}+b y^{2}+c x y=0
$$

sometimes have two self intersections, find the conditions for this occurring (in terms of an equation or inequality containing only a, b and c as variables) and the points of self intersection in terms of a, b and c).
10. Let p be some prime not equal to 2 or 5 . Prove that $\frac{1}{p}$ cannot be represented as a terminating decimal in base 10, and prove that ℓ_{10}, the period of the decimal's repeating cycle, divides $p-1$.

